Body Size, Age and Growth Pattern of the most represented anurans in Inselbergs of northeastern Argentina
Palabras clave:
Inselbergs, Paraje Tres Cerros, Body size, Age, AnuransResumen
The decline of biodiversity is an urgent concern that raises significant alarm today. Several species vanish without their biology being understood, or sometimes, even without awareness of their existence. Due to the significance that the Inselbergs has to biodiversity and nature, as they have been recognized as genuine evolutionary laboratories, they present a unique opportunity
to enhance our understanding of biologically unexplored species. Our study presents the first information regarding the body size, age and growth pattern of Scinax fuscovarius, Odontophrynus asper, and Melanophryniscus atroluteus, the three most frequently encountered anuran species in the Inselbergs outcrops of northeastern Argentina. We have demonstrated that the variations in body size cannot be attributed to the effect of the specific hill where the species inhabit. We discovered that sexual dimorphism in age and the analyzed morphological variables is expressed differently in the three examined species. We also demonstrated that the observed differences in body size between populations of M. atroluteus of Inselbergs and the Atlantic Forest of Argentina can be attributed to differences in age at sexual maturity and growth patterns. However, we believe that other proximate mechanisms should be taken into account, such as the effects of the environment and inter- and intra-specific competition experienced during the larval stages, for a better understanding of the population differences in adult body size and age. Our findings will assist in the evaluation of species management and conservation strategies within their habitat.
Citas
Altwegg, R. & Reyer, H.U. 2003. Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57: 872-882.
Anderson, R.P. & Handley, C.O. Jr. 2002. Dwarfism in Insular Sloths: Biogeography, Selection, and Evolutionary Rate. Evolution 56: 1045-1058.
Arana, M.D.; Natale, E.; Ferretti, N.; Romano, G.; Oggero, A.; Martínez, G.; Posadas, P. & Morrone, J.J. 2021. Esquema biogeográfico de la República Argentina. Opera lilloana 56.
Argoitia, M.A.; Cajade, R.; Hernando, B.A. & Teta, P. 2021. Bat (Mammalia: Chiroptera) biodiversity in a subtropical inselberg ecosystem of Northeastern Argentina. Revista de Biología Tropical 69: 379-390.
Atkinson, D. 1994. Temperature and organism size-A biological law for ectotherms? Advances in Ecological Research 25: 1-58.
Baeckens, S. & Van Damme, R. 2020. The island syndrome. Current Biology 30: 329 -339.
Barahona, F.; Evans, S.E.; Mateo, J.A.; Garcia-Marquez, M.; Lopez-Jurado, L.F. 2000. Endemism, Gigantism and Extinction in Island Lizards: The Genus Gallotia on the Canary Islands. Journal of Zoology 250: 373-388.
Barthlott, W. & Porembski, S. 2000. Why Study Inselbergs? En: Porembski S. & Barthlott W. (eds). Inselbergs: Biotic Diversity of Isolated Rock Outcrops in Tropical and Temperate Regions. 1-6 pp. Ecological Studies, Springer- Verlag, Berlin.
Bergmann C. (1847) Uber die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Stud 3: 595-708.
Beverton, R.J.H. & Holt S.J. 1957. On the dynamics of exploited fish populations. London: Fishery Invest Ser II, Vol. XIX, Ministry of Agriculture, Fisheries, and Food.
Bidau C.J.; Marti, D.A. & Baldo D. 2011. Inter- and intraspecific geographic variation of body size in South American redbelly toads of the genus Melanophryniscus Gallardo, 1961 (Anura: Bufonidae). Journal of Herpetology 45: 66-74.
Bornhardt, W. 1900. Zur OberfHichengestaltung und Geologie Deutsch-Ostafrikas. Reimer, Berlin.
Burke, A. 2003. Inselbergs in a changing world-global trends. Diversity and Distributions. 9: 375-383.
Cajade, R.; Etchepare, E.G.; Falcione, C.; Barrasso, D.A. & Álvarez, B.B. 2013a. A new species of Homonota (Reptilia: Squamata: Gekkota: Phyllodactylidae) endemic to the hills of Paraje Tres Cerros Corrientes Province Argentina. Zootaxa 3709: 162-176.
Cajade, R.; Medina, W.; Salas, R.; Fandiño, B.; Paracampo, A.; García, I.; Pautasso, A.; Piñeiro, J.M.; Acosta, J.L.; Zaracho, V.H.; Avalos, A.; Gómez, F.; Odriozola, M.P.; Ingaramo, M.D.R.; Contreras, F.I.; Rivolta, M.D.; Hernando, A.B. & Álvarez. B.B. 2013b. Las islas rocosas del Paraje Tres Cerros: un refugio de biodiversidad en el litoral mesopotámico argentino. Biológica 16: 147-159.
Calder, W.A. 1984. Size, function and life history. Boston: Harvard University Press.
Castanet, J. & Smirina, E. 1990. Introduction to the skeletochronological method in amphibian and reptiles. Annales des Sciences Naturelles, Zoologie et Biologie Animale 11: 191-196.
Coor, R.; Warren, R. & Goudie, A. 1993. Desert Morphology. UCL Press London.
Courtis, A.; Cajade, R., Piñeiro, J. M.; Hernando, A.; Santoro, S. & Marangoni, F. 2022. Population ecology of a critically endangered gecko, endemic to north-eastern of Argentina. Anais da Academia Brasileira de Ciências 94: e20200388.
Cracraft, J. 1989. Species as Entities of Biological Theory. In: Ruse, M. (ed.) What the Philosophy of Biology Is. Nijhoff International Philosophy Series, vol 32. Springer, Dordrecht.
Green, D.M. & Middleton, J. 2013. Body size varies with abundance, not climate, in an amphibian population. Ecography 36: 947-955.
Donnelly, M.A. & Guyer, C. 1994. Patterns of reproduction and habitat use in an assemblage of Neotropical hylid frogs. Oecologia 98: 291-302.
Duellman, W.E. 1970. The hylid frogs of Middle America. Monographs, Museum of Natural History, University of Kansas 1: 1-753.
Ellis, L.T.; Afonina, O.M.; Czernyadjeva; I.V.; Konoreva, L.A.; Potemkin, A.D.; et al. 2020. New national and regional bryophyte records. Journal of Bryology 42: 1-17.
Endler, J.A. 1977. Geographic variation, speciation, and clines. Princeton University Pess, Princeton, New Jersey.
Esteban, M. & Sanchiz, B. 2000. Differential growth and longevity in low and high altitude Rana iberica (Anura, Ranidae). Herpetological Journal 10: 19-26.
Fandiño, B.; Fernández, J.M.; Thomann, M.L.; Cajade, R. & Hernando, A.B. 2017. Comunidades de aves de bosques y pastizales en los afloramientos rocosos aislados del Paraje Tres Cerros Corrientes Argentina. Revista de Biología Tropical 65: 535-550.
Fassetta, E. 2023. Estudio de rasgos de historia de vida de tres especies sintópicas del género Boana (Anura, Hylidae) mediante esqueletocronología. Undergraduate Thesis Project, Universidad Nacional del Litoral, Santa Fe, Argentina.
Fitzsimons, J.A. & Michael, D.R. 2017. Rocky outcrops: a hard road in the conservation of critical habitats. Biological Conservation 211: 36-44.
Foster, S.A. & Endler, J.A. 1999. Thoughts on geographic variation in behavior. Pp. 287-307 In: Foster, S.A. & Endler, J.A. (eds.). Geographic variation in behavior. Oxford University Press, New York, Oxford.
Fredericksen, N.J.; Fredericksen, T.S.; Flores, B.; McDonald, E. & Rumiz, D. 2003. Importance of granitic rock outcrops to vertebrate species in a Bolivian tropical forest. Tropical Ecology 44: 185-196.
Gervazoni, P.B. 2017. Diversidad de lepidópteros diurnos (Papilionoidea) del Cerro Nazareno (Reserva Natural Privada Paraje Tres Cerros) Corrientes Argentina. Unpublished Bachelor thesis. Universidad Nacional del Nordeste. Corrientes, Argentina.
Goldberg, J.; Cardozo, D.; Brusquetti, F.; Bueno Villafañe, D.; Caballero Gini, A. & Bianchi, C. 2018. Body size variation and sexual size dimorphism across climatic gradients in the widespread treefrog Scinax fuscovarius (Anura, Hylidae). Austral Ecology 2018: 35-45.
Gómez, V.I. 2019. The influence of tadpole density and predation on the behavioral responses of two Neotropical anurans. Phyllomedusa 18: 293-298.
Gomez-Mestre, I. & Tejedo, M. 2005. Adaptation or exaptation? An experimental test of hypotheses on the origin of salinity tolerance in Bufo calamita. Journal of Evolutionary Biology 18: 847-855.
Gosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.
Halliday, T.R. & Tejedo, M. 1995. Intrasexual selection and alternative mating behaviour. In: Heatwole, H. & Sullivan, B.K. (eds), Amphibian Biology, Social Behaviour, pp. 419- 468.
Halliday, T.R. & Verrell, P. 1988. Body size and age in amphibians and reptiles. Journal of Herpetology 22: 253-265.
Hemelaar, A. 1985. An improved method to estimate the number of year rings resorbed in phalanges of Bufo bufo (l.) and its implications to populations from different latitudes. Amphibia-Reptilia 6: 323-341.
Hemelaar, A. 1988. Age, growth and other population characteristics of Bufo bufo from different latitudes and altitudes. Journal of Herpetology 22: 369-388.
Herczeg, G.B.; Gonda, A.L. & Merilä, J. 2009. Evolution of gigantism in Nine-Spined Sticklebacks. Evolution 63: 3190-3200.
Herridge, V.L. & Lister, A.M. 2012. Extreme insular dwarfism evolved in a mammoth. Proceedings of the Royal Society B 279: 3193-3200.
Hou, D.; Jia, T.; Ren, Y.; Zhu, W. & Liu, P. 2003. Phenotypic trait variations in the frog Nanorana parkeri: differing adaptive strategies to altitude between sexes. Journal of Vertebrate Biology 72: 1-11.
Huang, Y.; Wang, X.; Yang, X.; Jiang, J, & Hu, J. 2020. Unveiling the roles of interspecific competition and local adaptation in phenotypic differentiation of parapatric frogs. Current Zoology 66: 383-392.
Hyeun-Ji, L.; Broggi, J.; Sánchez-Montes, G.; Díaz-Paniagua, C. & Gomez-Mestre, I. 2020. Dwarfism in close continental amphibian populations despite lack of genetic isolation. Oikos 129: 1243-1256.
Isler, R.D. 2016. Tras la huella del ganado en las misiones jesuítas-guaraníes. Identificación de la ruta y catalogación de los caminos y estancias de la Cruz. Tesis Doctoral. Universidad de Granada.
James, F.C. 1970. Geographic size variation in birds and its relationship to climate. Ecology 51: 365-90.
Jiang, Y.; Zhao, L.; Luan, X. & Liao, W. 2022. Geographical variation in body size and the Bergmann’s rule in Andrew’s Toad (Bufo andrewsi). Biology 11: 1766.
Keogh, J.S.; Scott, I.A. & Hayes, C. 2005. Rapid and repeated origin of insular gigantism and dwarfism in australian tiger snakes. Evolution 59: 226-233.
Leclair, M.H.; Leclair, R. & Gallant, J. 2005. Application of skeletochronology to a population of Pelobates cultripes (Anura: Pelobatidae) from Portugal. Journal of Herpetology, 39: 199-207.
Leips, J. & Travis, J. 1994. Metamorphic responses to changing food levels in two species of hylid frogs. Ecology 75: 1345- 1356.
Leskovar, C.; Oromi, N.; Sanuy, D., & Sinsch, U. 2006. Demographic life history traits of reproductive natterjack toads (Bufo calamita) vary between northern and southern latitudes. Amphibia-Reptilia 27: 365-375.
Lomolino, M.V. 1985. Body size of mammals on islands: the island rule reexamined. American Naturalist 125: 310-316.
Lomolino, M.V. 2005. Body size evolution in insular vertebrates: generality of the island rule. Journal of Biogeophy 32: 1683- 1699.
Lovich, J.E. & Gibbons, J.W. 1992. A review of techniques for quantifying sexual size dimorphism. Growth Develop Aging 56: 269-281.
Marangoni, F. 2006. Variación clinal en el tamaño del cuerpo a escala microgeográfica en dos especies de anuros (Pelobates cultripes y Bufo calamita). PhD thesis, Sevilla, Spain, Universidad de Sevilla.
Marangoni, F. & Baldo D. 2023. Life-history traits of three syntopic species of the South American Redbelly toads (Anura: Bufonidae: Melanophryniscus) from the Atlantic Forest of Argentina. Herpetological Conservation and Biology 18: 213-228.
Marangoni, F., Tejedo, M. & Cogălniceanu, D. 2021. Can age and growth patterns explain the geographical variation in the body size of two toad species? Anais da Academia Brasileira de Ciências 93: e20190470.
Marangoni, F.; Tejedo, M. & Gomez-Mestre, I. 2008. Extreme reduction in body size and reproductive output associated with sandy substrates in two anuran species. Amphibia Reptilia 29: 541-553.
Meregalli, M. 1998. Gymnocalycium angelae spec. nov. eine neue Art aus Argentinien. Kakteen und andere Sukkulenten 49: 283-290.
Michael, D.R. & Lindenmayer, D.B. 2018. Rocky Outcrops in Australia: Ecology Conservation and Management. Csiro Publishing.
Montesinos, R.; da Silva, H.R. & de Carvalho, A.L.G. 2012. The “Island Rule” Acting on Anuran Populations (Bufonidae: Rhinella ornata) of the Southern Hemisphere. Biotropica, 44: 506-511.
Mora, C., Tittensor, D.P.; Adl, S.; Simpson, A.G.B. & Worm, B. 2011. How many species are there on Earth and in the ocean? PLoS Biology 9: e1001127.
Nadal, M.F.; Achitte-Schmutzler, H.C.; Zanone, I.; Gonzalez, P.Y. & Avalos, G. 2018. Diversidad estacional de arañas en una reserva natural del Espinal en Corrientes Argentina. Caldasia 40:129-143.
Odriozola, M.P. 2014. Complementariedad y solapamiento entre los nichos espacial y temporal de tres especies sintópicas de lagartijas del Paraje Tres Cerros, Corrientes, Argentina. Unpublished Bachelor thesis Universidad Nacional del Nordeste, Corrientes, Argentina.
Ojanguren-Affilastro, A.A.; Adilardi, R.S.; Cajade, R.; Ramírez, M.J.; Ceccarelli, F.S. & Mola, L.M. 2017. Multiple approaches to understanding the taxonomic status of an enigmatic new scorpion species of the genus Tityus (Buthidae) from the biogeographic island of Paraje Tres Cerros (Argentina). PLoSONE.12: e0181337.
Oliva, F. & Panizza, M.C. 2019. Visibilidad y paisaje en el sector centro-oriental de la provincia de Corrientes. Anuario de Arqueología, Rosario 11:77-90.
Pardo. L.M.; MacKay, I.; Oostra, B.; van Duijn, C.M. & Aulchenko, Y.S. 2005. The effect of genetic drift in a young genetically isolated population. Annals of Human Genetics 69: 288-295.
Peabody, C.E. 1958. A Kansas drought recorded in growth zones of a bullsnake. Copeia 1958: 91-94.
Piñeiro, J.M.; Cajade, R.; Hernando, A.B.; Courtis, A.; Ingaramo M.D.R. & Marangoni, F. 2021. The isolated rocky outcrops of northeastern Argentina and their role on the herpetofauna conservation. Anais da Academia Brasileira de Ciências 93: e20190932.
Piñeiro, J.M 2022. Ampliando la interpretación funcional de los ecosistemas de inselbergs: una perspectiva desarrollada a partir del estudio multifocal de los anfibios y reptiles del Paraje Tres Cerros. PhD thesis, Corrientes, Argentina, Universidad Nacional del Nordeste.
Porembski, S. & Barthlott, W. 2000. Inselbergs: Biotic Diversity of Isolated Rock Outcrops in Tropical and Temperate Regions. Ecological Studies. Springer-Verlag, Berlin.
Porembski, S. 2007. Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Revista Brasileira de Botanica 30: 579-586.
Porembski, S.; Martinelli, G.; Ohlemiiller, R. & Barthlott, W. 1998. Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Diversity and Distributions 4: 107 -119.
Quinzio, S.I. 2003. Determinación de edad y comportamiento asociado en Melanophryniscus rubriventris (Anura: Bufonidae). Undergraduate Thesis Project, Universidad Nacional de Córdoba, Córdoba, Argentina.
Raia, P. & Meiri, S. 2006. The island rule in large mammals: paleontology meets ecology. Evolution 60: 1731-1742.
Ravenna, P. 2003. Decisive proof on the validity of Amaryllis over Hippeastrum as mainly a South American genus including new species and new records of Amaryllidaceae from Argentina Brazil and Paraguay. Onira 9: 9- 22.
Ravenna, P. 2009. A survey in the genus Cypella and its allies (Iridaceae). Onira 12: 1-10.
Rebouças, R.; da Silva, H.R. & Solé, M. 2018. Frog size on continental islands of the coast of Rio de Janeiro and the generality of the Island Rule. PLoS One 13: e0190153.
Reques, R. & Tejedo, M. 1997. Reaction norms for metamorphic traits in natterjack toads to larval density and pond duration. Journal of Evolutionary Biology 10: 829-851.
Roth, V.L. 1990. Insular dwarf elephants: a case study in body mass estimation and ecological inference. Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press: 151–179.
Roth, V.L. 1990. Insular dwarf elephants: a case study in body mass estimation and ecological inference. In: Damuth, J. & MacFadden, B. J. (eds.), Body size in mammalian paleobiology: estimation and biological implications, pp. 151-179 New York, NY: Cambridge University Press.
Sagor, E.S.; Oullet, M.; Barten, E. & Green, D.M. 1998. Skeletochronology and geographic variation in age structure in the wood Frog, Rana sylvatica. Journal of Herpetology 34: 469-474.
Scheffé, H. 1953. A method for judging all contrasts in the analysis of variance. Biometrika 40: 87-110.
Schmidt-Nielsen, K. 1984. Scaling. Why is animal size so important? New York: Cambridge University Press.
Severgnini, M.R.; Baldo, D.; Vera Candioti, M.F. & Provete, D.B. 2021. Environmental influence on the body shape of Melanophryniscus tadpoles (Anura: Bufonidae). Poster. https://doi.org/10.6084/m9.figshare.13863566.v1
Shine, R. 1989. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quarterly Review of Biology 64: 419461.
Shine, R. 1990. Proximate determinants of sexual differences in adult body size. American Naturalist 135: 278-283.
Sinsch, U.; Di Tada, I.E. & Martino, A.L. 2001. Longevity, demography and sex-specific growth of the Pampa de Achala toad, Bufo achalensis Cei, 1972. Studies on Neotropical Fauna and Environment 36: 95-104.
Sinsch, U.; Oromi, N. & Sanuy, D. 2007. Growth marks in Natterjack Toad (Bufo calamita) bones: histological correlates of hibernation and aestivation periods. The Herpetological Journal 17: 129-137.
Sinsch, U.; Pelster, B. & Ludwig, G. 2015. Large‐scale variation of size‐and age‐related life‐history traits in the common frog: a sensitive test case for macroecological rules. Journal of Zoology 297: 32-43.
Smirina, E.M. 1972. Annual layers in bones of Rana temporaria. Zoologichesky Zhurnal 51: 1529–1534.
Smirina, E.M. 1994. Age determination and longevity in amphibians. Gerontology 40: 133-146.
StatSoft. 2007. Statistica (Data analysis software system). Version 8. StatSoft, Tulsa.
Tomašević, N.; Cvetković, D.; Miaud, C.; Aleksić, I. & CrnobrnjaIsailović, J. 2008. Interannual variation in life history traits between neighbouring populations of the widespread amphibian Bufo bufo. Revue d’Ecologie: La Terre et la Vie 63: 73- 83.
Tracy, C.R. 1999. Differences in body size among Chuckwalla (Sauromalus obesus) populations. Ecology 80: 259-271.
Van Valen, L. 1973. Body Size and Numbers of Plants and Animals. Evolution 27: 27-35.
von Bertalanffy, L. 1938. A quantitative theory of organic growth. Human Biology 10: 181-213.
Wang, S.; Zhu, W.; Gao, X.; Li, X.; Yan, S.; Liu, X.; Yang, J.; Gao, Z. & Li, Y. 2014. Population size and time since island isolation determine genetic diversity loss in insular frog populations. Molecular Ecology 23: 637-48.
Werner, E. 1986. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. The American Naturalist 128: 319-341.
White, E.O.; Ernest, S.K.M.; Kerkhoff, A.J. & Enquist, B.J. 2007. Relationships between body size and abundance in ecology. Trends in Ecology and Evolution 22: 323-330.
Woodward, G.; Ebenman, B.; Emmerson, M.; Montoya, J.M.; Olesen, J.M.; Valido, A. & Warren, P.H. 2005. Body size in ecological networks. Trends in Ecology and Evolution 20: 402-409.
Yu, T.L.; Wang, D.L.; Busam, M. & Deng, Y.H. 2019. Altitudinal variation in body size in Bufo minshanicus supports Bergmann’s rule. Evolutionary Ecology 33: 449-460.
Zaracho, V.H.; Céspedez, J.A.; Álvarez, B.B. & Lavilla, E.O. 2012. Guía de campo para la identificación de los anfibios de la provincia Corrientes (Argentina). Fundación Miguel Lillo. Publicación especial.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Cuadernos de Herpetología
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Atribución - No Comercial - Sin Obras Derivadas 4.0 Internacional
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- No Comercial — Usted no puede hacer uso del material con propósitos comerciales .
- Sin Derivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.